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We determined the most appropriate data structure for handling n-gram (also 
known as k-mer) string comparisons and storage for genomic sequence data that will 
scale in terms of memory and speed. This is critical to maintain LLNL as the leader in 
pathogen detection, as it will guide the design of the “Next Generation” system for 
computational signature prediction.

There are two parts to k-mer analysis for signature prediction that we 
investigated. First is the enumeration and frequency counting of all observed k-mers in a 
sequence database (k-mer is a biological term equivalent to the CS term n-gram). Second 
is the down-selection and pairing of k-mers to generate a signature. We determined that 
for the first part, suffix arrays are the preferred method to enumerate k-mers, being 
memory efficient and relatively easy and fast to compute. For the second part, a subset of 
the k-mers can be stored and manipulated in a hash, that subset determination based on 
desired frequency characteristics such as most/least frequent from a set, shared among 
sequence sets, or discriminating across sequence sets.

The first step of computing all the observed k-mers and their frequencies in a 
sequence database poses the memory bottleneck. Initially, we investigated hashing 
functions for turning data into a relatively small integer to serve as an index into an array, 
to speed up k-mer searches and counts for each k-mer in the sequence database and 
eliminating duplicates, figuring that actual k-mer sequences could be stored in flatfiles 
without demanding RAM. Conceptually, hashes are appealing, since they can be used as 
a dictionary. For a given k-mer stored as the key, any number of alternative data types 
can be linked as values, such as the genomes, species, or genes containing that k-mer, 
facilitating downstream analysis linking k-mers to taxonomy or function. This may be 
fruitful for investigations of advanced/synthetic/engineered biothreats or analysis of 
metagenomic or high-coverage, short-read sequence data (e.g. from Illumina 
sequencing).  Practically, however, we were unable to find a hashing function that met 
our needs. Since a hashing function may map several different keys to the same hash 
value, we found that once the hash table fills to approximately 25% of available space, 
the number of collisions increases, substantially slowing performance to build the hash. 
Thus, extremely large memory had to be set aside in advance so that less than 25% of it 
would be filled, which was prohibitive for all bacterial genomes. While perfect hashing 
algorithms can handle key sets with billions of keys, which we hoped could improve 
performance, further reading indicated that they are complicated and less efficient for 
dynamic sets (as compared with static sets) as is required to build the hash initially, that 
is, the process of scanning all the sequences in the database and adding k-mers to the 
hash as new ones are observed. Nor is cuckoo hashing suitable, since it is possible that a 
given k-mer can be indexed more than once in the hash. Finally, chain hashing was 
eliminated as it requires an extra 64 bits of memory for a pointer, countering our aim for 



maximum memory conservation. Thus, we turned to a different approach that did not 
require hashing, namely, suffix arrays. 

We found that suffix arrays to compute all observed k-mers and their frequency 
counts a fast, memory-efficient method for determining k-mer frequencies in large 
sequence databases. The memory required for this computation is a function of the 
database size, approximately ~33 bytes per DNA base. We used existing suffix array 
open source code from http://www.cs.dartmouth.edu/~doug/sarray/ , modifying to handle 
long, unsigned int and developing Python scripts for downstream processing of the output
such as determining the N most frequent or infrequent k-mers in a set of sequences. We 
can parallelize k-mer frequency counts for data sets too large to fit in RAM by 
partitioning the sequence data and then performing an out-of-core merge and sort on the 
results from each partition. While this makes the approach scaleable even for data sets 
that exceed available RAM, unfortunately, the out-of-core merge sort is slow, so large 
memory machines will enable larger datasets to be handled much faster without 
partitioning. Currently, sequence datasets over 4 GB must be partitioned in order to be 
run on a 32 GB node. Our all_bacteria database containing all available bacterial 
complete genome and plasmids was over 5 GB when we did a test run (it is now > 6 GB), 
and it required ~12 hours to do the suffix array and merge sort on the 17 partitions with 
k=20. Longer k required more time (e.g. k=60 required ~17 hours). We determined that 
in all viral genomes, we observe about 35% of the number of k-mers one would expect to 
see in a random sequence database of that size for k between 20 and 60. Similarly, for 
bacteria, one observes 45% of the expected number.

We provided test code to Maya Gokhale, Dave Fox, Eric Greenwade, and a 
collaborator at U. Houston for benchmarking memory requirements on different 
machines, including SiCortex, Violin flash-disk system, and a 500 GB SGI. They 
determined that the SGI had a 3x speed penalty for having to access disk over their fabric 
compared to the 256 GB RAM from MetaRam, a quad socket quad core Opteron, with 64
GB RAM that is “local” to each of the 4 sockets. These benchmarks were useful in 
LLNL evaluation of various of large memory systems, and contributed to the decision of 
which large memory nodes LLNL would purchase.

We successfully concluded this project, determining which data structures would 
be most useful for k-mer computations. Suffix arrays will be used for k-mer enumeration 
and sorting, and hashes will be used downstream for postprocessing (e.g. for signature 
design) on subsets of those k-mers selected based on their frequencies. Code has been 
developed to perform suffix array computations. We worked with the storage-intensive 
super computing team, providing them with benchmarking code to run on different 
machines for comparison, the results of which figured into decisions as to which large 
memory computers LLNL purchased. The results of this study are now being applied to 
Intelligence Technology Innovation Center/Office of the Chief Scientist sponsored work 
on emerging/engineered/advanced threat detection and to the the LDRD SI “Viral 
Discovery Platform”. David Hysom and Peter L. Williams prototyped code for this 
project, and Shea Gardner oversaw the project.

Web summary
For the k-mer (n-gram) analysis, suffix arrays are preferred, more memory 

efficient and faster than other (e.g. various hashing) methods. A subset of the k-mers 



selected based on frequency characteristics can be stored and manipulated in a hash for 
downstream tasks such as signature prediction or functional correlations.

We provided test code to storage-intensive super computing collaborators for 
benchmarking on different machines, including SiCortex, Violin flash-disk system, and a 
500 GB SGI. These benchmarks were useful in LLNL evaluation of various large 
memory systems, and contributed to the decision of which large memory nodes LLNL 
would purchase.
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